Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 918557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873139

RESUMO

Mycoplasma hominis is an opportunistic urogenital pathogen in vertebrates. It is a non-glycolytic species that produces energy via arginine degradation. Among genital mycoplasmas, M. hominis is the most commonly reported to play a role in systemic infections and can persist in the host for a long time. However, it is unclear how M. hominis proceeds under arginine limitation. The recent metabolic reconstruction of M. hominis has demonstrated its ability to catabolize deoxyribose phosphate to produce ATP. In this study, we cultivated M. hominis on two different energy sources (arginine and thymidine) and demonstrated the differences in growth rate, antibiotic sensitivity, and biofilm formation. Using label-free quantitative proteomics, we compared the proteome of M. hominis under these conditions. A total of 466 proteins were identified from M. hominis, representing approximately 85% of the predicted proteome, while the levels of 94 proteins changed significantly. As expected, we observed changes in the levels of metabolic enzymes. The energy source strongly affects the synthesis of enzymes related to RNA modifications and ribosome assembly. The translocation of lipoproteins and other membrane-associated proteins was also impaired. Our study, the first global characterization of the proteomic switching of M. hominis in arginine-deficiency media, illustrates energy source-dependent control of pathogenicity factors and can help to determine the mechanisms underlying the interaction between the growth rate and fitness of genome-reduced bacteria.


Assuntos
Mycoplasma hominis , Proteoma , Arginina/metabolismo , Lipoproteínas/metabolismo , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Proteoma/metabolismo , Proteômica
2.
Data Brief ; 31: 105853, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637477

RESUMO

Mycoplasma gallisepticum (MG) is one of the smallest free-living and self-replicating organisms, it is characterized by lack of cell wall and reduced genome size. As a result of genome reduction, MG has a limited variety of DNA-binding proteins and transcription factors. To investigate the dynamic changes of the proteomic profile of MG nucleoid, that may assist in revealing its mechanisms of functioning, regulation of chromosome organization and stress adaptation, a quantitative proteomic study was performed on MG nucleoids obtained from the cell culture in logarithmic and stationary phases of synchronous growth. MG cells were grown on a liquid medium with a 9 h starvation period. Nucleoids were obtained from the cell culture at the 26th and the 50th hour (logarithmic and stationary growth phases respectively) by sucrose density gradient centrifugation. LC-MS analysis was carried out on an Ultimate 3000 RSLCnano HPLC system connected to a Fusion Lumos mass spectrometer, controlled by XCalibur software (Thermo Fisher Scientific) via a nanoelectrospray source (Thermo Fisher Scientific). For comprehensive peptide library generation one sample from each biological replicate was run in DDA mode. Then, all the samples were run in a single LC-MS DIA run. Identification of DDA files and DIA quantitation was performed with MaxQuant and Skyline software, correspondingly. All raw data generated from IDA and DDA acquisitions are presented in the PRIDE database with identifier PXD019077.

3.
Sci Rep ; 3: 3236, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24241179

RESUMO

Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show--using proteomic analysis and dual fluorescence reporter in vivo assays--that m(2)G966 and m(5)C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m(2)G966 and m(5)C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.


Assuntos
Escherichia coli/genética , Nucleotídeos/genética , Óperon/genética , RNA Ribossômico 16S/genética , Triptofano/genética , Sítios de Ligação/genética , Códon/genética , Regulação Bacteriana da Expressão Gênica/genética , Metiltransferases/genética , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/genética , Proteômica/métodos , Ribossomos/genética , Transcrição Gênica/genética , Regulação para Cima/genética
4.
Proteomics ; 13(1): 17-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161590

RESUMO

To investigate the dynamic cellular response to a condition change, selective labeling of the nascent proteome is necessary. Here, we report a method combining click chemistry protein labeling with 2D DIGE. To test the relevance of the method, we compared nascent proteomes of actively growing bacterial cells with that of cells exposed to protein synthesis inhibitor, erythromycin. Cells were incubated with methionine analog, homopropargyl glycin, and their nascent proteome was selectively labeled with monosulfonated neutral Cy3 and Cy5 azides specially synthesized for this purpose. Following fluorescent labeling, the protein samples were mixed and subjected to standard 2D DIGE separation. The method allowed us to reveal a dramatic reduction of newly synthesized proteins upon erythromycin treatment, while the total proteome was not significantly affected. Additionally, several proteins, whose synthesis was resistant to erythromycin, were identified.


Assuntos
Bactérias , Proteínas de Bactérias , Química Click , Proteoma , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Eritromicina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo , Coloração e Rotulagem , Eletroforese em Gel Diferencial Bidimensional
5.
J Proteome Res ; 11(1): 224-36, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22129229

RESUMO

To date, no genome of any of the species from the genus Spiroplasma has been completely sequenced. Long repetitive sequences similar to mobile units present a major obstacle for current genome sequencing technologies. Here, we report the assembly of the Spiroplasma melliferum KC3 genome into 4 contigs, followed by proteogenomic annotation and metabolic reconstruction based on the discovery of 521 expressed proteins and comprehensive metabolomic profiling. A systems approach allowed us to elucidate putative pathogenicity mechanisms and to discover major virulence factors, such as Chitinase utilization enzymes and toxins never before reported for insect pathogenic spiroplasmas.


Assuntos
Proteínas de Bactérias/genética , Proteoma/genética , Spiroplasma/genética , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Códon , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Insetos/microbiologia , Anotação de Sequência Molecular , Família Multigênica , Mapeamento de Peptídeos , Proteoma/metabolismo , Proteômica , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Spiroplasma/metabolismo , Spiroplasma/fisiologia , Fatores de Virulência/metabolismo
6.
PLoS One ; 6(7): e21964, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818284

RESUMO

Mollicutes (mycoplasmas) have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a 'minimal cell': a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma/citologia , Mycoplasma/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Genoma Bacteriano/genética , Mycoplasma/genética , Fases de Leitura Aberta/genética , Ligação Proteica , RNA Antissenso/metabolismo , Especificidade da Espécie , Transcrição Gênica
7.
J Biol Chem ; 286(26): 22769-76, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21540185

RESUMO

Acylation of the N-terminal Cys residue is an essential, ubiquitous, and uniquely bacterial posttranslational modification that allows anchoring of proteins to the lipid membrane. In gram-negative bacteria, acylation proceeds through three sequential steps requiring lipoprotein diacylglyceryltransferase, lipoprotein signal peptidase, and finally lipoprotein N-acyltransferase. The apparent lack of genes coding for recognizable homologs of lipoprotein N-acyltransferase in gram-positive bacteria and Mollicutes suggests that the final step of the protein acylation process may be absent in these organisms. In this work, we monitored the acylation state of eight major lipoproteins of the mollicute Acholeplasma laidlawii using a combination of standard two-dimensional gel electrophoresis protein separation, blotting to nitrocellulose membranes, and MALDI-MS identification of modified N-terminal tryptic peptides. We show that for each A. laidlawii lipoprotein studied a third fatty acid in an amide linkage on the N-terminal Cys residue is present, whereas diacylated species were not detected. The result thus proves that A. laidlawii encodes a lipoprotein N-acyltransferase activity. We hypothesize that N-acyltransferases encoded by genes non-homologous to N-acyltransferases of gram-negative bacteria are also present in other mollicutes and gram-positive bacteria.


Assuntos
Acholeplasma laidlawii/metabolismo , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Lipoproteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Acetilação , Acholeplasma laidlawii/química , Acholeplasma laidlawii/genética , Aciltransferases/química , Aciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Lipoproteínas/química , Lipoproteínas/genética
8.
Free Radic Biol Med ; 49(12): 1947-55, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20888409

RESUMO

The productive internalization in the host cell of Chlamydia trachomatis elementary bodies and their infectivity depends on the degree of reduction of disulfide bonds in the outer envelope of the elementary body. We have hypothesized that the reducing agent may be intracellular glutathione (GSH). Three approaches were used to modulate the intracellular GSH concentration: (1) treatment of cells with buthionine sulfoximine, which causes irreversible inhibition of GSH biosynthesis; (2) hydrogen peroxide-induced oxidation of GSH by intracellular glutathione peroxidases; and (3) treatment of cells with N-acetyl-l-cysteine (NAC), a precursor of glutathione. In the first two cases, we observed a four- to sixfold inhibition of C. trachomatis infection, whereas in NAC-treated cells we detected an increase in the size of chlamydial inclusions. Using a proteomics approach, we showed that the inhibition of chlamydial infection does not combine with alterations in protein expression patterns after cell treatment. These results suggest that GSH plays a key role in the reduction of disulfide bonds in the C. trachomatis outer envelope at an initial stage of the infection.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/fisiologia , Glutationa/metabolismo , Acetilcisteína/farmacologia , Butionina Sulfoximina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Infecções por Chlamydia/microbiologia , Dissulfeto de Glutationa/farmacologia , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...